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1. Introduction. In the ordinary theory of strip bending the follow- 

ing assumptions are made [II. 

1) The strip is sufficiently wide, so that it is bent under the con- 

ditions of plane strain with no hardening. 

2) It is deformed in such a way that its thickness is everywhere the 

same and the plane edges are transformed into circular cylinders. 

3) It has the neutral surface r = d the outer fibers (r > d) being 

in tension while the inner ones (r < d) are in compression. 

4) The condition of yielding 

Trr - zoo = 2k (a <r < 4, zoo - z,, = 2k (d<r<b) 

occurs, a, b being the radii of the cylindrical boundaries in the de- 

formed state. 

If we make use of the transition theory of plastic deformation* it 

can be shown that it is not necessary to assume (4) and that the two 

regions of yielding - in tension and in compression - follow directly 

from the equations. It is also found that although in the elastic case 

l Seth, B.R. Elastic-plastic transition in shells and tubes under pres- 

sure. Math. Res. Center, Madison, Report, 1962, N 295. 1-18; Elastic- 

plastic transition in torsion. Report, 1962, n. 302. 1-13. 
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the strip can acquire various forms of bending, the only possible bend- 

ing form in the plastic state is circular, provided we assume that the 
orthogonal nature of the surfaces before the deformation is preserved 

also after the deformation. 

When moment G (per unit width) applied to the edges increases, the 

elastic deformation becomes nonlinear. In a further increase of G yield- 

ing takes place in the plate. The classical model of elastic-plastic 

body makes use of the yield condition in order to connect the two 

states. It does not take into account the nonlinear region through which 
the transition takes place. The theory of finite elastic deformations 
leads to nonlinear differential equations, the asymptotic solution of 
which at the bifurcation point represents the transition to the plastic 
state. This transition due to the change of the stress-strain relations 

can occur both for tension and compression. Thus two bifurcation points 

are obtained. It is now sufficient to assume that Poisson’s ratio u is 
0.5 and replace the strain tensor by the rate of strain tensor to derive 

the state of complete plasticity from the transition results. The Values 

of the elasticity coefficients in transition can be expressed in terms 

of the yield limit in accordance with 
in tension or in shear. We shall show 
plastic bending of a strip. 

the results of finite deformation 

how this theory can be applied to 

2. The eoll?onents of displacement, strain and strebs. Assume that, the 

undeformed planes of the strip x’ = const and y’ = const remain mutually 

orthogonal after the deformation. Then we may set for the displacements 

u = 5 - 2’ = x - j (E), v=y-Y'=Y-Qcp(rl) (2.1) 

Here x + iy = z = F($ + iq) = F(c); functions f, Q, F are to be de- 

termined. 

The components of finite strain referred to the deformed state have 
the form 

The stresa-strain relations are taken in the form 

We have further 
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3. Equilibrium equations. The stress equilibrium equations 

TSj j = 0 

lead to two nonlinear differential equations 

(3.i) 

Setting F, = f” + 9”. F, = Idc/dzl’ we arrive at the following form 

of (3.2) 

Their solution has the form 

F,2(“-@& = @ 

rhere o is Poisson* s ratio and ke is an integration constant. 

(3.4) 

The functional equation (3.4) can be solved. It can easily be proved 
that it leads to various forms including circular, hyperbolic, elliptic 
and hyperelliptic functions. Without going into details of these prob- 
lems, consider the type of solutions which can occur at the bifurcation 
points where f’ or cp’ tends to zero or infinity. It follows from (3.4) 
that at these points F, tends to become a function of $ or q only. Since 
Fp = ld(/dzj* the corresponding functional equation cau be satisfied 
only when 

2 = exp (k&) (3.5) 

where k, is a suitable constant. This shows that the plastic deformed 
state yields a circular cylinder. 

4. Traasition sad plastic strean eogoneats. It Is easy to derive for 
the principal stresses 7s~ and T,.,,, the following expressions: 

%4 = &Zi + P - p&f’“, %n = ill1 + p - ~F#. rc, = 0 (4.1) 

Denoting 

R = 2 - c - -i”I- TCE = Ft [(i - c) FI + Cf’S] 
( 

l- 23 
c= -_6 i 1 (4.2) 
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i3lnR 1 ijFz ~FI i aj - c aqf2 / ag 

at 
=zF+ 

(1 - c) F1 + ~f’~ (4.3) 

or making use of (3.4) 

aInR ah Fz (1-cii)F,aInFz/aE-ca(p’2/aE -- 
a; =7-- (1 - c) F1 + Cf’2 

(4.4) 

An analogous equation is obtained if we differentiate (4.2) with re- 

spect to rj. 

As f’ - 00, which corresponds to an infinite tension. we obtain from 

(4.4) 

8InR c alnF2 6’InR --- zE_--_ c alnFz 

aE 2 aE 
=__ 

3 a 2 a 

(The second equation is derived in an analogous way.) These equations 

prove that in the transition 

R =. KIFrr!? (4.6) 

where K, is the integration constant. 

Similarly, when f’ - 0. which corresponds to an infinite compression, 

we obtain for the transition value of R the formula 

R = Az I&‘/z (p’Z]--^!(l-c) (4.1) 

Taking into account (4.1) and (4.2) we arrive at the transition 

values of TEE and vr,,,. 

As it was mentioned in Section 3, quantities 4 and q are polar co- 

ordinates so that z = exp < and F2 = Idc/dz( 2 = l/r2. Consequently, from 

(4.6) and (4.7) we obtain 

in the tension region 

(4.8) 
in the compression region 

where (I and b are the interior and exterior radii of the deformed strip. 

It follows from the results for simple shear under the conditions of 

finite deformation [21, that in transition ~1 - k the latter being the 

yield limit in shear. Passing to the limit c - 0 (i.e. u - l/2) we ob- 

tain from (4.8) for the plastic radial stress 

r __ 
I, (d<r<b), T,,. =T - 2k Inl. 

LL (a < p < (I) (4.9) 



the boundary 

fined by the 

Transition theory of strip beinding 575 

between the regions of tension and compression being de- 

relation 

d2 = ab (4.10) 

From (4.1) we obtain 

T “o z.z 2/i 1 - I,, -.;- 
( 7 (d < r <W, z,,= - 2k (1 + In ;-) (a < r<d) (4.11) 

This results in the yield condition mentioned in Section 1. 

5. The nature of the deformation. As soon as the flow begins, instead 

of the strain components the rate of strain has to be employed, and the 

transition state has to be taken as initial. The definition of the rate 

of strain contains only instantaneous and infinitely close to it con- 

figurations. Therefore we may take 

2e 11 = Ui j + u,j. ; 6.1) 

instead of the components of the finite deformation used in Section 2. 

Thus we obtain 

* ” 
c 

3 
Pii = I.1 -, ti; - ; Tii) (Oii = 0) (5.2) 

,- _ 

Here point denotes differentiation with respect to a conveniently 

selected parameter of the deformation process. This relation can be ob- 

tained from the following relation used in Section 2 

ei; = E-1 [(I + 3) ,tij -- 3qi] (5.3) 

setting u = l/2 and replacing E-’ by A and eij by iii. It is also 

assumed that the elastic deformation is negligibly small. 

of 

For the plastic state (u - l/2, c - 0) we obtain from (4.2) 

jG2_$ A2 = d2 = ab (5.4) 

Let a be the angle of bending per unit length and In a the parameter 

yielding. Then 

Consequently 

The components of the radial aad transverse deformations (5.6) are 

identical to those derived by Hill [d. The remaining analysis is the 



B.R. Seth 

same as Hill’s. 
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